Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Lancet Neurol ; 22(2): 137-146, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36681446

RESUMO

BACKGROUND: Pilot clinical trials have shown the safety of intra-arterial bone marrow mononuclear cells (BMMNCs) in stroke. However, the efficacy of different doses of intra-arterial BMMNCs in patients with acute stroke has not been tested in a randomised clinical trial. We aimed to show safety and efficacy of two different doses of autologous intra-arterial BMMNC transplantation in patients with acute stroke. METHODS: The IBIS trial was a multicentre phase 2, randomised, controlled, investigator-initiated, assessor-blinded, clinical trial, in four stroke centres in Spain. We included patients (aged 18-80 years) with a non-lacunar, middle cerebral artery ischaemic stroke within 1-7 days from stroke onset and with a National Institutes of Health Stroke Scale score of 6-20. We randomly assigned patients (2:1:1) with a computer-generated randomisation sequence to standard of care (control group) or intra-arterial injection of autologous BMMNCs at one of two different doses (2 × 106 BMMNCs/kg or 5 × 106 BMMNCs/kg). The primary efficacy outcome was the proportion of patients with modified Rankin Scale scores of 0-2 at 180 days in the intention-to-treat population, comparing each BMMNC dose group and the pooled BMMNC group versus the control group. The primary safety endpoint was the proportion of serious adverse events. This trial was registered at ClinicalTrials.gov, NCT02178657 and is completed. FINDINGS: Between April 1, 2015, and May 20, 2021, we assessed 114 patients for eligibility. We randomly assigned 77 (68%) patients: 38 (49%) to the control group, 20 (26%) to the low-dose BMMNC group, and 19 (25%) the high-dose BMMNC group. The mean age of participants was 62·4 years (SD 12·7), 46 (60%) were men, 31 (40%) were women, all were White, and 63 (82%) received thrombectomy. The median NIHSS score before randomisation was 12 (IQR 9-15), with intra-arterial BMMNC injection done a median of 6 days (4-7) after stroke onset. The primary efficacy outcome occurred in 14 (39%) patients in the control group versus ten (50%) in the low-dose group (adjusted odds ratio 2·08 [95% CI 0·55-7·85]; p=0·28), eight (44%) in the high-dose group (1·89 [0·52-6·96]; p=0·33), and 18 (47%) in the pooled BMMNC group (2·22 [0·72-6·85]; p=0·16). We found no differences in the proportion of patients who had adverse events or dose-related events, but two patients had a groin haematoma after cell injection in the low-dose BMMNC group. INTERPRETATION: Intra-arterial BMMNCs were safe in patients with acute ischaemic stroke, but we found no significant improvement at 180 days on the mRS. Further clinical trials are warranted to investigate whether improvements might be possible at different timepoints. FUNDING: Instituto de Salud Carlos III co-funded by the European Regional Development Fund/European Social Fund, Mutua Madrileña, and the Regional Ministry of Health of Andalusia.


Assuntos
Isquemia Encefálica , AVC Isquêmico , Acidente Vascular Cerebral , Masculino , Humanos , Feminino , Pessoa de Meia-Idade , Acidente Vascular Cerebral/tratamento farmacológico , Isquemia Encefálica/tratamento farmacológico , Espanha , Medula Óssea , Resultado do Tratamento , Transplante de Células
2.
Stem Cells Transl Med ; 11(4): 343-355, 2022 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-35348788

RESUMO

Graft versus host disease (GVHD) is a severe complication after allogenic hematopoietic cell transplantation (HSCT). Several clinical trials have reported the use of mesenchymal stromal cells (MSCs) for the treatment of GVHD. In March 2008, the Andalusian Health Care System launched a compassionate use program to treat steroid-resistant GVHD with MSC. Clinical-grade MSC were obtained under GMP conditions. MSC therapy was administered intravenously in four separate doses of 1 × 106 cells/kg. Sixty-two patients, 45 males (7 children) and 17 females (2 children), received the treatment. Patients had a median age of 39 years (range: 7-66) at the time of the allogenic HSCT. The overall response was achieved in 58.7% of patients with acute (a)GVHD. Two years' survival for aGVHD responders was 51.85%. The overall response for patients with chronic (c)GVHD was 65.50% and the 2-year survival rate for responders was 70%. Age at the time of HSCT was the only predictor found to be inversely correlated with survival in aGVHD. Regarding safety, four adverse events were reported, all recovered without sequelae. Thus, analysis of this compassionate use experience shows MSC to be an effective and safe therapeutic option for treating refractory GVHD, resulting in a significant proportion of patients responding to the therapy.


Assuntos
Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Doença Aguda , Adolescente , Adulto , Idoso , Criança , Ensaios de Uso Compassivo/efeitos adversos , Feminino , Doença Enxerto-Hospedeiro/etiologia , Doença Enxerto-Hospedeiro/terapia , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Transplante de Células-Tronco Hematopoéticas/métodos , Humanos , Masculino , Transplante de Células-Tronco Mesenquimais/efeitos adversos , Transplante de Células-Tronco Mesenquimais/métodos , Pessoa de Meia-Idade , Esteroides/uso terapêutico , Adulto Jovem
3.
Platelets ; 33(1): 98-109, 2022 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-33393414

RESUMO

Recent years have witnessed the introduction of ex vivo expanded dermal fibroblasts for several cell therapy and tissue-engineering applications, including the treatment of facial scars and burns, representing a promising cell type for regenerative medicine. We tested different in-house produced human platelet lysate (HPL) solutions against fetal bovine serum as supplements for in vitro fibroblast expansion by comparing cell yield, molecular marker expression, extracellular matrix (ECM) generation, genomic stability and global gene expression. Our in-house produced HPL supported fibroblast growth at levels similar to those for FBS and commercial HPL products and was superior to AB human serum. Cells grown in HPL maintained a fibroblast phenotype (VIM+, CD44+, CD13+, CD90+), ECM generation capacity (FN+, COL1+) and a normal karyotype, although gene expression profiling revealed changes related to cell metabolism, adhesion and cellular senescence. The HPL manufacturing process was validated within a GMP compliant system and the solution was stable at -80ºC and -20ºC for 2 years. Dermal fibroblasts expanded in vitro with HPL maintain a normal karyotype and expression of fibroblast markers, with only minor changes in their global gene expression profile. Our in-house produced GMP-HPL is an efficient, safe and economical cell culture supplement that can help increase the healthcare activity of blood transfusion centers through the re-use of transfusional plasma and platelets approaching their expiration date. Currently, our HPL solution is approved by the Spanish Agency of Medicines and Medical Devices and is being used in the manufacture of cell therapy products.Abbreviations: AB plasma: plasma group AB; ABHS: AB Human Serum; ABHS+GF: AB Human Serum supplemented with growth factors; ANOVA: Analysis of variance; ATMPs: Advanced Therapies for Medicinal Products; CPE: cytopathic effect; DEGs: Differentially expressed genes; DMEM: Dulbecco's modified Eagle's Medium; ECM: Extracellular matrix; ELISA: enzyme-linked immunosorbent assay; FBS: Fetal bovine serum; FDR: False discovery rate; FGF: Fibroblast growth factor; GMP: Good manufacturing practice; HPL: Human platelet lysate; HPL-CM: commercial human platelet lysate; MSCs: mesenchymal stem cells; NEAA: non-essential amino acids; P/S: penicillin/streptomycin; PBS: phosphate buffered saline; PC: leukodepleted platelet concentrate; PCR: polymerase chain reaction; PDGF: Platelet-derived growth factor; PDGFRA: Platelet-derived growth factor receptor alpha; qPCR: quantitative polymerase chain reaction; RNA: Ribonucleic acid; RT: Room temperature; TAC: Transcriptome analysis console; TGF-ß: Transforming growth factor beta.


Assuntos
Plaquetas/metabolismo , Fibroblastos/metabolismo , Animais , Bovinos , Feto , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...